Analytic Performance Model of a Main-Memory Index Structure

نویسنده

  • Jonas Schneider
چکیده

Efficient evaluation of multi-dimensional range queries in a main-memory database is an important, but difficult task. State-of-the-art techniques rely on optimised sequential scans or tree-based structures. For range queries with small result sets, sequential scans exhibit poor asymptotic performance. Also, as the dimensionality of the data set increases, the performance of tree-based structures degenerates due to the curse of dimensionality. Recent literature proposed the Elf, a main-memory structure that is optimised for the case of such multi-dimensional low-selectivity queries. The Elf outperforms other state-ofthe-art methods in manually tuned scenarios. However, choosing an optimal parameter configuration for the Elf is vital, since for poor configurations, the search performance degrades rapidly. Consequently, further knowledge about the behaviour of the Elf in different configurations is required to achieve robust performance. In this thesis, we therefore propose a numerical cost model for the Elf. Like all main-memory index structures, the Elf response time is not dominated by disk accesses, refusing a straightforward analysis. Our model predicts the size and shape of the Elf region that is examined during search. We propose that the response time of a search is linear to the size of this region. Furthermore, we study the impact of skewed data distributions and correlations on the shape of the Elf. We find that they lead to behaviour that is accurately describable through simple reductions in attribute cardinality. Our experimental results indicate that for data sets of up to 15 dimensions, our cost model predicts the size of the examined Elf region with relative errors below 5%. Furthermore, we find that the size of the Elf region examined during search predicts the response time with an accuracy of 80 %.

منابع مشابه

Structure of Wavelet Covariance Matrices and Bayesian Wavelet Estimation of Autoregressive Moving Average Model with Long Memory Parameter’s

In the process of exploring and recognizing of statistical communities, the analysis of data obtained from these communities is considered essential. One of appropriate methods for data analysis is the structural study of the function fitting by these data. Wavelet transformation is one of the most powerful tool in analysis of these functions and structure of wavelet coefficients are very impor...

متن کامل

An Improvement in WRP Block Replacement Policy with Reviewing and Solving its Problems

One of the most important items for better file system performance is efficient buffering of disk blocks in main memory. Efficient buffering helps to reduce the widespeed gap between main memory and hard disks. In this buffering system, the block replacement policy is one of the most important design decisions that determines which disk block should be replaced when the buffer is full. To o...

متن کامل

An Improvement in WRP Block Replacement Policy with Reviewing and Solving its Problems

One of the most important items for better file system performance is efficient buffering of disk blocks in main memory. Efficient buffering helps to reduce the widespeed gap between main memory and hard disks. In this buffering system, the block replacement policy is one of the most important design decisions that determines which disk block should be replaced when the buffer is full. To o...

متن کامل

A High Performance Parallel IP Lookup Technique Using Distributed Memory Organization and ISCB-Tree Data Structure

The IP Lookup Process is a key bottleneck in routing due to the increase in routing table size, increasing traıc and migration to IPv6 addresses. The IP address lookup involves computation of the Longest Prefix Matching (LPM), which existing solutions such as BSD Radix Tries, scale poorly when traıc in the router increases or when employed for IPv6 address lookups. In this paper, we describe a ...

متن کامل

A High Performance Parallel IP Lookup Technique Using Distributed Memory Organization and ISCB-Tree Data Structure

The IP Lookup Process is a key bottleneck in routing due to the increase in routing table size, increasing traıc and migration to IPv6 addresses. The IP address lookup involves computation of the Longest Prefix Matching (LPM), which existing solutions such as BSD Radix Tries, scale poorly when traıc in the router increases or when employed for IPv6 address lookups. In this paper, we describe a ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

متن کامل
عنوان ژورنال:
  • CoRR

دوره abs/1609.01319  شماره 

صفحات  -

تاریخ انتشار 2016